IN THE NORTH ATLANTIC OCEAN. (Fig. 100.)

No. of Station.	Latitude.	Longitude.	Depth in Fathoms.
43	36° 23′ N.	71° 51′ W.	
44	37 25	71 40	1700
53	36 30	63 40	2650
65	36 33	47 58	2700
69	38 23	37 21	2200
71	38 18	34 48	1675
80	35 3	21 25	2660
AA	Bay of Biscay.		2090
ВВ	Coast of Portugal,		1090

IN THE NORTH PACIFIC OCEAN. (Fig. 101.)

No. of Station.	Latitude.	Longitude.	Depth in Fathoms.
237	34° 37′ N.	140° 32′ E.	1875
240	35 20	153 39	2900
243	35 24	166 35	2800
245	36 23	174 31	2775
246	36 10	178 0	2050
248	37 41	177° 4′ W.	2900
252	37 52	160 17	2740

From a depth of 300 fathoms to a depth of 1500 fathoms the temperatures in the North Pacific are greatly lower than those in the North Atlantic. In both oceans the temperature gradually falls for every zone of equal depth in passing from west to east, as the influence of the reflux of the equatorial current becomes weakened. The table given on page 368, which is constructed from the same serial soundings which are represented graphically in Figs. 100 and 101, shows at once the eastward cooling, and the much greater condensation and accumulation of warm water in the basin of the North Atlantic. most marked phenomenon of the Gulf-stream, the condensation and superheating of the water of the equatorial current in the Caribbean Sea and the Gulf of Mexico, and its ejection in a defined hot stream through the Strait of Florida, has no parallel in the Pacific, and the Kuro Siwa must be regarded as representing that diffused portion of the reflux of the equatorial current which passes northward outside the West Indian Islands.

On the 26th we sounded in 2650 fathoms. Serial tempera-