lished by him in the Transactions of the Geological Society in the year 1834, calls some small circular reefs found everywhere round the shores in the wash of the breakers, and which appear to be due to their agency alone, "Serpuline reefs." As I have already said, the Bermudas Islands, in common with most other coral islands, are formed by the raising of the weather edge of the reef above the level of the sea. This appears to be accomplished, in the first place, by the agency of the waves alone. Fragments, many of them with the inherent power of increasing themselves and cementing themselves together through the growth of the living things which invest them, are piled up on one another until they reach the highest point accessible to the sea in storms. The moment the ridge appears above water, a beach of coral-sand is formed against it. The top of the beach dries at low water, and the sand is blown on, first among the crevices of the breakwater already formed, which it widens and strengthens, and then over the breakwater to the ledges and reefs beyond, which it tends to raise to the surface. In this way in all coral seas islands have a tendency to form along the windward edges of annular reefs. The windward island then forms a shelter to the leeward portion of the ring, depriving it of the main source of its elevation, the piling-up of fragments by the waves; so that on the leeward side we usually have more or less of the reef remaining submerged, and any passages of communication between the central lagoon and the outer sea. I have little to add to the excellent account of the geology of Bermudas given by General Nelson. The Bermudas of the present day is simply a bank of blown sand in various stages of consolidation. The depth of water increases round the island with extreme rapidity. Seven miles to the north there is a sounding of 1375 fathoms, and about two miles farther off one of 1775 fathoms. To the north-east there is water of 1500 fathoms at a distance of ten miles; to the north-west of 2100