care following its spreading or contracting movements. At the same time an infinitely delicate sheath of sarcode containing minute transparent granules, but no oil-globules, rises on each of the spines to its extremity, and may be seen creeping up one side and down the other of the spine with the peculiar flowing movement with which we are so familiar in the pseudopodia of Gromia and of the Radiolarians. If the cell in which the Globigerina is floating receive a sudden shock, or if a drop of some irritating fluid be added to the water, the whole mass of sarcode retreats into the shell with great rapidity, drawing the oil-globules along with it, and the outline of the surface of the shell and of the hair-like spines is left as sharp as before the exodus of the sarcode.

Major Owen (op. cit.) has referred the Globigerina with spines to a distinct species, under the name of G. hirsuta. I am inclined rather to believe that all Globigerina are, to a greater or less degree, spiny when the shell has attained its full development. In specimens taken with the tow-net the spines are very usually absent; but that is probably on account of their extreme tenuity; they are broken off by the slightest touch. In fresh examples from the surface, the dots indicating the origin of the lost spines may almost always be made out with a high power. There never are spines on the Globigerina from the bottom, even in the shallowest water. Two or three very marked varieties of Globigerina occur; but I certainly do not think that the characters of any of them can be regarded as of specific value.

There is still a good deal of obscurity about the nature of Orbulina universa, an organism which occurs in some places in large proportion in the globigerina ooze. The shell of Orbulina (Fig. 47) is spherical, usually about 5 mm. in diameter, but it is found of all smaller sizes. The texture of the mature shell resembles closely that of Globigerina, but it differs in some important particulars. The pores are markedly of two